Creatotech+

Teaching a robot its limits, to complete open-ended tasks safely

If someone advises you to “know your limits,” they’re likely suggesting you do things like exercise in moderation. To a robot, though, the motto represents learning constraints, or limitations of a specific task within the machine’s environment, to do chores safely and correctly.

For instance, imagine asking a robot to clean your kitchen when it doesn’t understand the physics of its surroundings. How can the machine generate a practical multistep plan to ensure the room is spotless? Large language models (LLMs) can get them close, but if the model is only trained on text, it’s likely to miss out on key specifics about the robot’s physical constraints, like how far it can reach or whether there are nearby obstacles to avoid. Stick to LLMs alone, and you’re likely to end up cleaning pasta stains out of your floorboards.

To guide robots in executing these open-ended tasks, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) used vision models to see what’s near the machine and model its constraints. The team’s strategy involves an LLM sketching up a plan that’s checked in a simulator to ensure it’s safe and realistic. If that sequence of actions is infeasible, the language model will generate a new plan, until it arrives at one that the robot can execute.

This trial-and-error method, which the researchers call “Planning for Robots via Code for Continuous Constraint Satisfaction” (PRoC3S), tests long-horizon plans to ensure they satisfy all constraints, and enables a robot to perform such diverse tasks as writing individual letters, drawing a star, and sorting and placing blocks in different positions. In the future, PRoC3S could help robots complete more intricate chores in dynamic environments like houses, where they may be prompted to do a general chore composed of many steps (like “make me breakfast”).

“LLMs and classical robotics systems like task and motion planners can’t execute these kinds of tasks on their own, but together, their synergy makes open-ended problem-solving possible,” says PhD student Nishanth Kumar SM ’24, co-lead author of a new paper about PRoC3S. “We’re creating a simulation on-the-fly of what’s around the robot and trying out many possible action plans. Vision models help us create a very realistic digital world that enables the robot to reason about feasible actions for each step of a long-horizon plan.”

The team’s work was presented this past month in a paper shown at the Conference on Robot Learning (CoRL) in Munich, Germany.

*Earn $1,000 Cash*

Here’s How It Works:

1. Refer a Friend: Share the name and contact details of anyone who might benefit from our innovative web solutions.

2. They Sign a Deal: When your referral becomes a client and completes a deal with us, you get rewarded.

3. Get Paid: Receive $1,000 in cash as a thank you for your referral!

It’s that simple. Help your friends get the best in web design and development, and earn big while doing it. Start referring today and watch your rewards grow!

*Subject to IRS income tax rules and regulations

    Referree Details:

    Your Details: